新澳门萄京娱乐场官网_新萄京娱乐场
做最好的网站
您的位置:新澳门萄京娱乐场官网 > 科学 > 力学所提出多级构筑纳米结构的强韧化策略

力学所提出多级构筑纳米结构的强韧化策略

2019-06-26 00:44

图片 1追求金属结构材料的高强度、高塑性/韧性是一个永恒的主题。但通过单一的结构细化在提高金属强度的同时,往往伴随塑性/韧性的降低。如何突破金属强度和塑性的对立是力学和材料交叉学科面临的挑战。均匀结构由于其结构均匀,动态变形和剪切带演化机理相对成熟,但缺乏加工硬化能力,在动态条件下缺乏均匀塑性。近年来研究表明,多级结构是高强度金属突破其塑性瓶颈的一个重要途径。

对于金属结构材料,人们总是希望其不仅强度高,同时还具有大的拉伸塑性。然而强度与塑性却是一对本征的矛盾,人们可以容易地通过塑性变形将晶粒细化到纳米尺寸,把传统粗晶的强度提高5-15倍,代价却是丧失了几乎全部的均匀塑性。材料的塑性取决于微结构相关的加工硬化能力,高强度纳米金属中传统的位错塑性与硬化效应非常微弱;即使在低层错能材料中,晶粒尺度效应也会强烈抑制孪生变形和相变诱导的加工硬化效应。因而,人们面临的极大挑战是怎样在高强度纳米金属中获得加工硬化能力。

多级结构在准静态条件下具有优于均匀结构的力学性能,那么其在动态条件下是否同样具有优越的力学性能?各级结构及其协调变形如何影响动态力学性能?多级结构动态变形行为的微结构机理是什么?近期,中国科学院力学研究所、北卡州立大学、约翰霍普金斯大学的科研人员合作,在以上科学问题的研究中取得进展。

近日,中国科学院力学研究所非线性力学国家重点实验室的武晓雷研究团队提出一种多级构筑结构的策略,应用在低层错能的等原子比CrCoNi中熵合金中,实现了高强度与拉伸塑性的优异匹配。研究成果发表在《美国国家科学院院刊》(PNAS,2018)上。

针对梯度结构,科研人员设计了一套新的动态剪切试验手段,首次揭示了梯度纳米结构的动态剪切变形机理:由于各层之间在动态变形过程中发生应变分配,产生了额外的加工硬化,能够延迟剪切带在纳米晶表层的萌生,以及限制剪切带从表面到芯部的扩展(其传播速度相比均质结构低一个数量级),梯度纳米结构金属能够获得比均质结构优越的动态剪切性能,同时发现广为人知的剪切带萌生的最大应力准则在梯度结构中不再适用。

研究团队利用简单的工业化冷轧与再结晶退火,巧妙地构筑了一种多级晶粒尺度的纳米结构,即晶粒尺寸非均匀的异构 (heterogeneous grain structure),包含微米、亚微米和纳米等三个尺度的晶粒。他们发现多级结构在塑性变形时,发生应力应变再分配,特别是亚微米晶粒由于承担了较大的应力,可诱导变形孪生,在晶界不断形成纳米孪晶,并在拉伸变形过程中演化为纳米晶粒。多级结构最显著的拉伸变形特点是其本身由于纳米晶粒的形成而不断增强,发生动态的晶粒细化,类似于TWIP效应和TRIP效应。实验进而证实,大量原位形成的纳米晶粒诱导了迄今为止最为显著的背应力硬化效应 (back stress hardening),提高了加工硬化能力,因而在1.2GPa的高屈服强度下获得了25%的拉伸均匀塑性。他们进一步发现,与均质的低层错能或高层错能纳米结构相比,多级结构在同等强度下可以获得更大的加工硬化能力和拉伸塑性。

通过冷轧和低温短时退火,科研人员在低层错能金属中熵合金中获得多尺度晶粒结构,研究发现多尺度晶粒之间的变形协调和应变分配能够促进加工硬化,动态变形过程中发生了晶粒细化,能够延缓剪切带的萌生,促进动态剪切塑性,获得了迄今为止报道的最优越的动态剪切性能。同时发现,低温条件下,能够促进多级孪晶、相变、位错锁等晶内缺陷的萌生和交互作用,提升加工硬化能力,导致更优越的动态性能 。该研究为提高金属材料在冲击条件下的吸能效率和防护效果提供思路,同时可为高强高韧金属在极端环境下的应用(如汽车工业的吸能结构、军事上的防护结构等)提供帮助。

他们的研究成果揭示了多级构筑结构的强韧化机理,提出了针对低层错能金属材料如不锈钢和中高熵合金等的一条强韧化新途径。这项研究工作的合作者为美国约翰霍普金斯大学材料系教授马恩。研究工作得到科技部国家重点研发计划纳米科技重点专项、国家自然科学基金和中科院B类先导专项的资助。

相关研究成果发表在Materials Research LettersActa Materialia上。该研究得到了国家自然科学基金委、国家重点研发计划纳米专项、中科院战略性先导科技专项的资助。

文章链接

本文由新澳门萄京娱乐场官网发布于科学,转载请注明出处:力学所提出多级构筑纳米结构的强韧化策略

关键词: